

# बिरसा मुंडा द्रायबल युनिवर्सिटी Birsa Munda Tribal University

राजपिपला, जि॰ नर्मदा Rajpipla, Dist. Narmda Established by Tribal Development Department, Govt. of Gujarat

# School of Science

B.Sc. (Chemistry) Programme

Subject Code & Name: - BS04MJCHE2 Inorganic Chemistry-II

**Teaching and Evaluation Scheme:** 

|         | Teaching Scheme |   |       |                         | <b>Examination Scheme</b> |    |     |  |
|---------|-----------------|---|-------|-------------------------|---------------------------|----|-----|--|
|         |                 |   |       | Component Weightage (%) |                           |    |     |  |
| Credits |                 |   | CCE   |                         | SEE                       |    |     |  |
| L       | T               | P | Total | TH                      | PWE                       | TH | PWE |  |
| 3       | -               | 1 | 4     | 35                      | 15                        | 35 | 15  |  |

| D Co                                 |
|--------------------------------------|
| B.Sc.                                |
| IV                                   |
| BS04MJCHE2                           |
| Inorganic Chemistry-II               |
| Theory & Practical                   |
| 3+1                                  |
| 3 +2                                 |
| 45 Theory Hours + 30 Practical Hours |
|                                      |
|                                      |

# Learning Objectives

- 1. Familiarize students with the Arrhenius, Bronsted-Lowry and Lewis theories of acids and bases including their definitions and applications.
- 2. Learn the relationship between acid strength and the value of pKa and how it relates to the relative acidity of different compounds.
- 3. Identify conjugate acid-base pairs and understand how they relate to the strength of an acid or base.
- 4. Understand the criteria for classifying acids and bases as hard or soft based on their polarizability and other properties.
- 5. Learn that hard acids prefer to interact with hard bases while soft acids prefer to interact with soft bases.
- 6. Learn how the concept of hardness and softness relates to electronegativity and the ability of an atom to attract electrons.
- 7. Understanding monodentate, bidentate and polydentate ligands and their impact on complex stability.
- 8. Understanding how coordination numbers and ligand arrangements lead to specific geometries.



# बिरसा मुंडा द्रायबल युनिवर्सिटी Birsa Munda Tribal University

राजपिपला, जि॰ नर्मदा Rajpipla, Dist. Narmda Established by Tribal Development Department, Govt. of Gujarat

School of Science
B.Sc. (Chemistry) Programme

## Prerequisites (if any)

### **Learning Outcomes**

On the Completion of this course, students will able to:

- 1. Identify and explain the characteristics of hard and soft acids and bases based on size, charge, polarizability and other factors.
- 2. Use the HSAB principle to predict the stability of acid-base complexes understanding that hard-hard and soft-soft interactions are generally more stable.
- 3. Define acids and bases according to Bronsted-Lowry and Lewis theories.
- 4. They should be able to name coordination compounds according to IUPAC rules.
- 5. Students should be able to identify and describe different types of isomerism in coordination compounds.
- 6. Students should be familiar with terms like coordination number, ligand field and complex ion.
- 7. Students should understand what constitutes a coordination compound including the central metal ion, ligands and coordination sphere.

| UNIT | TOPIC/SUB-TOPIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TEACHING<br>HOURS |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Ι    | Acid – Base Chemistry  Arrhenius concept-the water ion system, Lowry-Bronsted theory- the proton donor-acceptor system, Conjugate acid-base pairs, Relative strength of acids and bases, The leaving effect, levelling and differentiating solvents, utility and limitation of Bronsted, Arrhenius concept, The Lewis concept-the electron donor concept system, Classification of Lewis acids, Classification of Lewis acids and bases into Hard and Soft Acids and Bases, HSAB principle and stability of the complex Acid: Base, The Usanovich concept- the positive-negative system | 15                |





# बिरसा मुंडा द्रायबल युनिवर्सिटी Birsa Munda Tribal University

राजपिपला, जि॰ नर्मदा Rajpipla, Dist. Narmda Established by Tribal Development Department, Govt. of Gujarat

School of Science
B.Sc. (Chemistry) Programme

|     | D.De. (Chremanery) I ogrammen                                                                                                                                  |    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|     | Non-Aqueous Solvent                                                                                                                                            |    |
|     | Classification of solvents, General properties of ionizing solvents                                                                                            |    |
|     | (physical and chemical), Chemical reactions, Liquid ammonia as                                                                                                 |    |
|     | non-aqueous solvent, Solubility of substance in liq. NH <sub>3</sub> ,                                                                                         |    |
|     | Advantage and disadvantage of using liq.NH <sub>3</sub> as a solvent, Auto-                                                                                    | 15 |
| II  | ionization of liq. NH <sub>3</sub> , Chemical reactions occurring in liq. NH <sub>3</sub> , Liquid Sulphur dioxide as solvent, Chemical reactions occurring in | 13 |
|     | liquid Sulphur dioxide, Auto ionization of Hydrofluoric acid                                                                                                   |    |
|     | (Liquid HF), Auto ionization of BrF <sub>3</sub> , Auto ionization of IF <sub>5</sub> ,                                                                        |    |
|     | Neutralization reaction, Difference between solvation and                                                                                                      |    |
|     | solvolysis                                                                                                                                                     |    |
|     | Co-ordination Chemistry-I                                                                                                                                      |    |
|     | Definitions of some important terms of coordination compounds,                                                                                                 |    |
|     | Werner's theory of coordination compounds, Ligands and                                                                                                         |    |
|     | classification of ligands, IUPAC nomenclature of coordination                                                                                                  |    |
|     | compounds Conformation isomerism, Ionization isomerism, Hydrate                                                                                                |    |
| III | Conformation isomerism, Ionization isomerism, Hydrate isomerism, Coordination isomerism, Linkage isomerism,                                                    | 15 |
|     | Coordination position isomerism, Ligand isomerism,                                                                                                             |    |
|     | Stereo isomerism: Geometrical isomerism, Geometrical isomerism                                                                                                 |    |
|     | in 4 and 6 coordinated complex compounds, Cis and trans                                                                                                        |    |
|     | isomerism, Optical isomerism in 4 and 6 coordinated complex                                                                                                    |    |
|     | compounds.                                                                                                                                                     |    |

# Text Book(s)

### Reference Books

- 1. Basic Inorganic Chemistry Gurdeep & Chatwal.
- 2. Inorganic Chemistry J. N. Gurtu & H. C. Khera
- 3. Advanced Inorganic Chemistry- Cotton and Wilkinson
- 4. Principles of Inorganic chemistry- B. R. Puri, L. R. Sharma and K. C. Kalia; Vallabh publications, Delhi.
- 5. Concise Inorganic Chemistry J. D. Lee
- 6. Selected Topic in Inorganic Chemistry, 8<sup>th</sup> -edition, by Wahid U. Malik, G.D. Tuli and R.D. Madan
- 7. Advance Inorganic Chemistry (Volume-II) by Satya Prakash, G. D. Tuli, S.K. Basu, R. D. Madan

Web Resources





# बिरसा मुंडा ट्रायबल युनिवर्सिटी Birsa Munda Tribal University

राजपिपला, जि॰ नर्मदा Rajpipla, Dist. Narmda Established by Tribal Development Department, Govt. of Gujarat

School of Science
B.Sc. (Chemistry) Programme

# Practical(s) (if any) Gravimetric Analysis: 1. Determine the amount of iron (Fe<sup>2+</sup>) as Fe<sub>2</sub>O<sub>3</sub> gravimetrically in the given solution of FeSO<sub>4</sub>(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> 6H<sub>2</sub>O or FeSO<sub>4</sub>7H<sub>2</sub>O and free H<sub>2</sub>SO<sub>4</sub> 2. Determine the amount of Aluminum (Al<sup>3+</sup>) as Al<sub>2</sub>O<sub>3</sub> gravimetrically in the given solution of Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> 18H<sub>2</sub>O and free H<sub>2</sub>SO<sub>4</sub> 3. Determine the amount of Barium (Ba<sup>2+</sup>) as BaSO<sub>4</sub> gravimetrically in the given solution of BaCl<sub>2</sub>.2H<sub>2</sub>O and free HCl 4. Determine the amount of Nickel (Ni<sup>2+</sup>) as Ni (DMG)<sub>2</sub> gravimetrically in the given solution of NiCl<sub>2</sub>.2H<sub>2</sub>O and free HCl

L:: Lecture, T:: Tutorial, P::Practical

**CCE::** Continuous and Comprehensive Evaluation

(CCE Theory includes Mid Semester Examination, Assignment, MCQ quizzes, Seminar, Reflective notes, class participation, case analysis and presentation, slip tests (announced/surprised), attendance etc. or any combination of these)

PWE:: Practical Work Examination

(PWE includes Laboratory practical work, project work, viva simulation exercise work etc.)

SEE:: Semester End Evaluation

